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ABSTRACT

The implementation of & multicommodity flow algorithm into a FORTRAN
code is discussed. The algorithm is based on a gradient projection method
[1] with diagonal scualing bascd on llessian or Jacobian information. The
flows carricd by the active paths of cach origin-destination (OD) pair
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1. Optimal Multicommodity Flow Problem Formulation

We have a directed network with sct of nodes L and set of links N.

Let W be a collection of ordered node pairs referred to as origin-destination

(OD) pairs. For each OD pair weW we arc given a positive number r, Tepresent-
ing input flow into thc network from origin to destination. Let Pw be a
given set of directed paths joining the origin node and destination pode
of OD pair w. (Pw could be the set of all simple directed paths joining

origin and destination, or it could be a restricted set of paths determined

o —

a priori on the basis of some unspecified considerations). Note that we

do not exclude the possibility that two distinct OD pairs have the same

B

origin and destination and possibly a diffecrent set of paths, but are as-
sociated with different classes or types of traffic.
:? Let x_ be the flow carried by a generic path p. The optimization

variables of the problem are Xp’ pcPw, weW and must satisfy the constraints

, ¥V weW, 1)

[}
”
i
"

) x > 0 , v pcPw, weW, (2)

Let x be the vector of all path flows

x = {xp] peP . weW} (3

For each link (i,j) and OD pair w we are given a continuously dif-
: ferentiable function Tij(x,w), which is to be interpreted as the length

of link (i,j) when the path flow vector is x. In data communication rout-

ing and traffic assignment problems Tij(x,w) usually has the interpretation of
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marginal delay and travel time respectively (see [1]-[19]). We assume

that for all feasible x and all weW

Tij(x,w) > 0 s Y (i,j)el , 4)

The length of a path pePw when the path flow vector is x is defined by

L (x,w) = ] T. . (x,w) (5)
P (i,))ep
i.e. it is the sum of lengths of its links.
The problem we are considering is the following:

Find a path flow vector x* satisfying the constraints (1), (2) and such

that for every weW and peP

* — <
xp >0 __;> Lp(x*,w) < Lp,(x*,w), Y p'ePw. (6)

In other words we are looking for a path flow pattern x* whereby the
only paths that carry positive flow are shortest paths with respect to the
link lengths Tij(x*,w).

The problem described above includes, among others, problems of
optimal routing in data networks [1]-[8] and (possibly asymmetric) traffic
assignment problems in transportation networks [9]-[19]. We refer to the
references just cited for extensive discussions. The survey paper [1]
describes in detail the data communication context. A typical formulation

there is to find a feasible path flow vector x that minimizes

(i),:j) P13 Fi5) ik
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the total flow Fij of the link (i,j) given by

Fiy = L 1 x, 8(.4,5) (8)
weW pePw
where i
1 if link (i,j) belong to path p
6(p,i,j) = (9)
0 otherwise.

It can be shown (see e.g. [1]) that if we make the identification

T.. = D!, : The first derivative of D, . (10)
1) 1} 1)

the routing optimization problem falls within the framework of the general

multicommodity flow problem described carlier.
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2. A Projection Method for Solving the Multicommodity Flow Problem

The MULTIFLO and MULTIFLOl codes given in Appendices I and II of this
report implement an algorithm that solves the problem of the previous

section for the case where for all OD pairs weW
Pw = Set of all simple paths joining the origin and destination of w.

The set of OD pairs is divided into C groups called commodities. All OD

pairs of a commodity have the same origin node. Furthermore the data structures

of the codes can handle only the case where the lengths Ti;(x,w) depend on
J

w through the corresponding commodity c. That is

Tij(x,w) = Tij(x’;)’ V (i,j)¢l, and OD pairs w, w of the same

commodity c.

It is also assumed that for all feasible F

aT. . _ '
5—31—- 2 0 V (i,j) Dbelonging to the path p
X
p

MULTIFLO and MULTIFLO! operatec as follows:

At the beginning of the kth iteration we have for the generic OD
pair w W a set of active paths P: consisting of at most (k-1) paths.
(These paths were generated in earlier iterations and it is implicitly
assumed that all other paths carry zero flow). The following calculation

is executed sequentially for each commodity--first for commodity 1, then

for commodity 2, and so on up to the last commodity C:




Step 1: A shortest path that joins the origin node for the commodity
with all other nodes is calculated. The length for cach link (i,j) used
for this calculation is Tij(x,w) where x is the current path flow vector.
These shortest paths arc added to the corresponding list of active paths
of each OD pair of the commodity if they arc not already there, so now
the list of active paths for each OD pair of the commodity contains at

most k paths.

Step 2: Each OD pair w of the commodity is taken up sequentially. For each
active path p of w the length Lp fcf. (5)] is calculated together with an
additional number ay called the stepsize (more on the choice of this
later). Both Lp and ap are calculated on the basis of the current total
link flow vector. Let p be the shortest path calculated in Step 1 for

the OD pair. The path flows of all paths p # p are updated according to

max {0, - L -L- if L > L—-
{ x, ap( - p)} if L 5

X+ (11)

X otherwise.

The path flow of the shortest path p is then adjusted so that the sum
of flows of all active paths equals r, as required by the constraint (1),

i.c.

X= + r_ - X . :
P active p#p P (12

In other words an amount xp or ap(Lp-hF) is shifted from each nonshortest

path to the shortest path p--whichever is smaller. The total link flows Fij

are adjusted to reflect the changes in X and xﬁ.
!

The rationale for iteration (11) is cxplained in {1], {6], [8], (9].
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It is based on a gradient pfojcction method [9], [21]. Note that it is
possible that Lp'<L5-for some p # p cven though p was calculated earlier
as a shortest path. The reason is that by the time Lp and La-are computed

the total link flow vector may have changed since the time the shortest

path has been calculated due to iterations on the path flows of other OD
pairs of the same commodity.
Regarding the choice of the stepsize up, the MULTIFLO and MULTIFLO1

codes use the following formula for all p # p

o = § (13)

! where

- (14)
(l.J)ch P

wn
]

and Lp is the set of links

lb = {(i,j)| (i,j) belongs to either p or p,
| but not to both p and pl.
The rationale for this is as follows:

If we interpret the algorithm as one that tries to satisfy the equation

‘ L - L 0 V p with 0 (16)
L - = . with x_ > 0,
] T it P n
a natural choice for ap is
A Ax
a = P (17)
l P A(L_-L=)
PP

, vhere A(Lp-Lﬁj is the variation of (LP-LE) resulting from a small variation




Axp in the path flow xp (and an attendant variation —Axp in the path flow
xEJ. This corresponds to an approximate form of Newton's method whereby
only the diagonal clements of the Jacobian matrix (corresponding to the
current OD pair) are taken into account while the off-diagonal terms are
set to zero (see also {1] for further discussion). For Axp + 0 it is

easily seen that (17) yields

~y aT, .

; i a’rij : Z)Tij aT:.lj
= (go= - =} + = - =), (18)
r (i,idep axp axp {i,j)ep axp axp

In most cases of interest we have

Tis « iy if (i,i)ep and (3,))€p
ax -

D 3

*p

3T,

T if (i,i)ep

=

*p

so (18) becomes approximately [c.f. (18), (14}]

= M|
L

~ S
Lo : )
p (laJ)"Lp ]xp f

therehy justifying thec use of the stepsize (13), (14).
If one wishes to cmploy the formula (18) for the stepsize it is

necessary to modify the codes. Thesc modifications should not be too




-8-

difficult for an experienced user. Another possibility is to use a smaljer
value of stepsize ap than the one given by (13)--for example qp = pSI;1
pe(0,1) is a fixed relaxation parameter. (A smaller stepsize enhances the
convergence properties of the algorithm but may deteriorate its rate of

B convergence). This can be accomplished without any changes in the code

by simply introducing the relaxation parameter p in the subroutine that
aT. .
calculates 3&%1'[Cf' (14)}.
P

In the MULTIFLO code a shortest path tree is generated and stored
at each iteration for each commodity. As a result the memory storage for
shortest paths is proportional to the number of iterations so for large
problems one cannot execute a large number of iterations without incurring
a heavy penalty for disk I/0. MULTIFLO will usually find in five to ten
iterations what is for most practical problems an adequate approximation

to an optimal solution. This is particularly true of lightly loaded net- !
works (e.g. with utilization of all links less than 60% at the optimum).

For heavily loaded networks the number of required iterations usually
tends to be larger (say 10-30). It should be a rare occasion whon a user

will require more than thirty iterations for his practical problem.

MULTIFLO1 differs from MULTIFLO only in the method used for storing
the active paths. MULTIFLOl stores cxplicitly all active paths in a

single array rather than storing them implicitly through the generated

shortest path trees. As a result the memory storage of MULTIFLOl depends
on the number of active paths generated and is largely independent of
the number of iterations executed. For certain problems including
situations where a large number of itcrations is desired MULTIFLO]l may
hold astorage advantage over MULTIFLO. Both codes generate identical

* numerical results although MULTIFLO! appears to be somewhat faster on

sample test problems.

e e r—— A
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5. Data Structures for Representing the Problem

The data structures of MULTIFLO and MULTIFLOl are described in the
code documentation. The problem input structure will be illustrated here

by means of the 5 node-6 link network shown in Figure 1:

3 &
ANV
// \\’/
; 5
Voo NG
4
'/
1 \z
ru:‘S\Ate l

Node Length Arrays (FRSTOU, LASTOU):

These arrays specify the network topology.

FRSTOU(NODE): The first link out of NODE

LASTOU(NODE): The last link out of NODE
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NODE FRSTOU LASTOU
1 1 2

2 4 5

3 3 3

4 6 6

5 0 0

Note that all arcs with the same head node must be grouped together in

the arc list. A node with no outgoing links is recognized via FRSTOU = 0

Arc Length Arrays (STARTNODE, ENDNODE)

These arrays also specify the network topology:

STARTNODE (ARC): The head node of ARC
ENDNODE (ARC): The tail node of ARC

ARC STARTNODE  ENDNODE_
1 1 3
2 1 4
3 3 5
4 2 3
5 2 4
6 4 5

Commodity Length Arrays (ORGID, STARTOD)

ORGID (COMMODITY): The origin node of COMMODITY
STARTOD (COMMODITY): A pointer to the first OD pair of COMMODITY on

the OD pair list
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For the example of Figurc 1 we will assume three commodities

COMMODITY ORGID STARTOD
1 2 1
2 1 3
3 1 4

Note that it is required that OD pairs are listed scquentially by com-

modity, i.e. the OD pairs of commodity | arc listed first, followed by
the OD pairs of commodity 2, etc. Therefore the STARTOD array together
with the total number of OD pairs specify all OD pairs associated with

each commodity.

OD Pair Length Arrays (DEST, INPUT_FLOW)

DEST(OD): The destination node of 0D

INPUT_FLOW(OD): The input traffic of OD

oD DEST INPUT_FLOW

1 3 problem dependent
2 5 "

3 3 "

4 4 "

5 5 "

From the arrays ORGID, STARTOD and DEST together with the total number
of OD pairs the set of OD pairs corresponding to ecach commodity is com-

pletely specified. For our example thesc are:
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COMMODITY OD PAIRS
1 (2,3), (2,5)
2 (1,3)

3 (1,4), (1,5)

Additional input information is required to calculate the link

aTij

lengths Tij and their first derivatives Y in the subroutine DERIVS
and DERIV1. This is of course problem dependent. The listing of Appendix I
gives an example which is typical of routing problems in data networks [cf.

equations (7)-(10)].

a e -
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4. Memory Requirements - Comparisons with Other Methods

The memory storage requirements of both MULTIFLO and MULTIFLOl are
substantial, but this is true for all methods that provide as output
not only the optimal total link flows but also detailed information
about the optimal routing from origins to destinations (i.e. optimal
path flows).

Assuming that 1 byte is allocated for a logical variable, 2 bytes
are allocated for storing a node or link identification number and an
iteration number, 4 bytes are allocated for storing a commodity, OD pair
or path identification number, and 4 bytes are allocated for storing a
real number (e.g. a_path or link flow) the total array storage in bytes

of MULTIFLO during execution is

n, + 9, + 6n. + On + 10n, + Zn_. n_, n

N L C oD P I N C (19)

where:

ny: Number of nodes

n,: Number of links

ne: Number of commodities

: Number of OD pairs

n,: Number of active paths generated

nI: Number of iterations.

Additional storage is required for information necessary to calculate
link lengths and their derivatives but this is typically of order O(nL)
and is not significant.

The dominant array as far as storagc of MULTIFLO is concerned is the
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triple indexed PRED array which stores the shortest path trees generated
for each commodity at each iteration. This array accounts for the last
term ZnI"N“C in (19). The term 10np is also substantial since the

number of active paths np can be as large as nngp However, because

the algorithm stores a path only once at the iteration it is first gen-
erated and does not duplicate it if it is generated again later, the
actual number np is typically much smaller than nngp- This was con-
firmed by extensive computational experimentation, that showed that except

for very heavily loaded networks the actual number of active paths n  was

P
typically no more than ZnOD(!) and often considerably less. We conclude

therefore that the dominant bottleneck for storage is the shortest path

description array PRED requiring 2n bytes.

1"N"c
In the MULTIFLOl code the array PRED is not used. In its place the

array PDESCR is used which requires storage of ZnPnN at most. This

calculation assumes conservatively that a path has ny links. However
in practice the actual storage for PDESCR is several times less than

ZnPnN. If we adopt the rough estimate np ~ Z“OD then we c~nclude that

the storage requirements of MULTIFLO and MULTIFLOl1 are roughly comparable

n

if the number of iterations n; is comparable to something between 592
n n,. C

400 with MULTIFLOl becoming definitely preferable if n. = —92.

n. I n.

MULTIFLO1 is also preferable for problems that are solved repetitively with

and

minor variations in their data since then the knowledge of the path

description array PDESCR can be fruitfully exploited. This is not pos-

sible with MULTIFLO.

In large problems where only the total 1ink flows are of interest P

(e.g. traffic assignment problems) a different algorithm [e.g. the flow
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Deviation (or the Frank-Wolfe) method [3], {8] or the Cantor-Gerla (or

simplicial approximation) method [4], {15], may be preferable over
MULTIFLO or MULTIFLOl, since then storage of order O(nL) or perhaps

O(nInL) is required. tHowever gbgg_gggglgg[lgggingﬁinformation is of

interest the memory storage requircments of MULTIFLO are competitive

with those of other methods based on shortest paths including the Flow

Deviation and Cantor-Gerla methods. The reason is that detailed rout-

ing information can be provided by thesc methods only if the shortest
paths generated at each iteration are storced explicitly in an array
such as PRED, and as mecntioned carlier this is the main memory storage
bottleneck.

There are algorithms that can solve multicommodity flow problems
and provide detailed routing information without requiring the generation
and storage of shortest paths. These algorithms arc based on a link flow

formulation [20], or the link flow fraction formulation due to Gallager

[2], [5], [7] whereby the optimization variables are the flows or fractions
of flow respectively for cach commodity that are routed along each link.
The storage requirement for thesc algorithms is of order O(nCnL) and is
j independent of the number of iterations. Wher we compare this storage
with the O(nIn n, ) storage of algorithms based on shortest paths we see

cCL

that link flow formulations hold an advantage in terms of storage for

problems where a large number of iterations is desirable. The reverse
is true if the number of iterations required for adequate solution of

the problem is small, or if the number of links is much larger than the

number of nodes.
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We finally note a final advantage of the path flow formulation over link
flow formulations. When the set of paths for each OD pair is restricted to
be a given strict subset of the set of all possible simple paths it is extremely

cumbersome to use a link flow formulation. By contrast it is straightforward

to modify the MULTIFLOl code to handle this situation.
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APPENDIX 1: MULTIFLO Code

The following FORTRAN code works on the VAX family of computers. It

consists of a DRIVER program and several subroutines:

LOAD: Reads network topology and link length data from disk.

MULTIFLO: This is the main algorithm.

SP: Calculates a shortest path tree from an origin node to all other
nodes.

PRFLOW: Prints out to disk problem data and algorithmic results.

DERIVS: This user supplicd routine calculates for a g;¥en link (i,j) its

length T'j (DICAL) and the length derivative 21 (D2CAL) .
i

3X
P
DERIV1: This routine is the same as DERIVS except that it calculates
aT. .
the length Tij (DICAL) but not the length derivative 5ill .

p
DELAY: This user supplied routine is useful only if the multicommodity

flow problem is a routing optimization problem of the form (7)-(10)
as described in Section 1. For asymmetric traffic assignment problems

it has no purpose. It calculates the total delay

i, Y
where D!, = T.. [cf. (7)-(10)]. The value of D..(F..) is calculated
1] 1) 1) 1)
using the function DCAL.
Two versions of the shortest path routine SP are provided (SHORTPAPE
and SHORTHEAP) which can be used interchangeably. SHORTHEAP is recommended
for problems where there are only few destinations for each commodity.

Otherwise SHORTPAPE based on [23] should be preferable.

A program (SETUP) is also provided for the purpose of creating the data

describing the problem in a format that is compatible with the LOAD routine.
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The routines LOAD, DERIV1, DERIVS, DELAY, and DCAL supplied in this

appendix correspond to the most commonly solved optimal routing problem in

data communication network applications whereby a capacity Cij is given for

each link (i,j) (this is the array BITRATE in the code) and

F,.
D, (F..) = E——%%—— (M/M/1 Queueing Delay) (A.1)
o 157 1]
¢,
T..(F..) = —2
ijtoij (C. .-F )2
ij ij
3T, (F, .) _ 2, .
F.. 3
ij (Cij-rij)

Because Dij(Fij)_)w as Fii -+ Cii these formulas have been modified so that

if Fij >p Cij’ where pe(0,1) is a parameter set by the user, then Di"

]
aT. .
T.., E—ll- are calculated using a quadratic function which has the same
137 9Fy; "
value, first and second derivatives as ETT%%TT at the breakpoint pCi..
1) 1)

In the program the parameter p is given by the variable MAXUTI set in
the subroutine LOAD to 0.99. The user may wish to change thLis value.
The guideline is that p should be set at a value exceeding the maximum
link utilization
F..

max gL

(i,3)el ~ij
at the optimal solution. This trick gets around situations whereby the
input flows are so large that excceding some of the link capacities dur-

ing some phase of the algorithm is inevitable.
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The MULTIFLO code will stop computing when one of two conditions is

met: Either the maximum number of iterations (MAXITER) is exceeded or a

normalized measure of deviation from the optimal solution falls below a

certain tolerance (TOL). This measure is roughly cqual to the percentage

of input traffic of an Ob pair that does not lic on a shortest path (maxi-
mized over all OD pairs), and its magnitude is not substantially affected
by the size of the problem. Both convergence parameters MAXITER and TOL

are set by the user in the subroutine LOAD.
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DRIVER

'DRIVER' IS A SIMPLE EXECUTIVE TO INVOKE THE °‘MULTIFLO' COMMODITY
ROUTING PROGRAM. 'DRIVER' INVOKES SUBPROGRAM 'LOAD' TO READ
DATA INTO 'MULTIFLO' INPUT COMMON BLOCKS. FILES READ BY

'LOAD' ARE CREATED BY A TERMINAL SESSION WITH THE USER FOR
NETWORK DEFINITION THROUGH THE USE OF PROGRAM 'SETUP'.

EXECUTION STEPS FOR PROGRAM °'DRIVER'

1) ASSIGN FORTRAN UNIT 01 AS CREATED BY PROGRAM ‘LOAD'
2) ASSIGN FORTRAN UNIT 02 AS CREATED BY PROGRAM ‘'LOAD'
3) ASSIGN FORTRAN UNIT 06 AS A DESIGNATED OUTPUT FILE

E.G.:
$ ASSIGN NETWORK.DAT FOROO1
$ ASSICN TRAFFIC.DAT FOROO2
$ ASSIGN OUTPUT.DAT FOROO06

OO0 NONO000000n

: UCCCCCCCCCCCCLCCCCCCCCCCCCCCClCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

@

PROGRAM DRIVER

LOAD FORTRAN UNIT 01 AND FORTRAN UNIT 02 FROM DISK AS CREATED
FROM PROGRAM 'SETUP'

[eNe NSNS

INCLUDE 'PARAM.DIM'

INCLUDE 'PATHS.BLK'

INCLUDE °‘NETWRK.PRM'

INCLUDE ‘CONVRG.PRM'

INTEGER COMMODITY,ORIGIN,DESTOD,OD,PATH
CALL LOAD

EXECUTE THE 'MULTIFLO' NETWORK ALGORITHM. ‘'MULTIFLO' SCHEDULES
ITS OWN OUTPUTS TO FORTRAN UNIT 06 ON EACH ITERATION

aOOOn00n

INITIALIZE THE TIMER

CALL LIB$INIT_TIMER

CALL MULTIFLO

RECORD THE COMPUTATION TIME
CALL LIB$SHOW_TIMER

O

PRINT MAX LINK UTILIZATION (RELEVANT FOR M/M/1 QUEUEING DELAY
OPTIMIZATION)

anOan

. UMAX=0.0

; DO 100 I=1,NA |
' UMAX=MAX (UMAX, FA (1) /BITRATE (1))

100 CONTINUE .

WRITE (6, *) "MAXIMUM LINK UTILIZATION' |

WRITE (6, *) UMAX

C PRINT FINAL PATH FLOW INFO
: c
f WRITE (6, *) 'ORIGIN / DESTINATION / PATH # / PATH_FLOW'
' DO 1000 COMMODITY=1, NUMCOMMOD
ORIGIN=ORGID (COMMODITY)
DO 500 OD=STARTOD (COMMODITY) , STARTOD (COMMODITY+1) -1

-




DESTOD=DEST (OD)

PATH=0D

DO WHILE (PATH.GT.O)
WRITE (6., *) ORIGIN, DESTOD, PATH, FP (PATH)
PATH=NEXTPATH (PATH)

END DO
500 CONTINUE
1000 CONTINUE
STOP

END
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c
C LOAD
C
C "LOAD' READS IN DATA FROM DISK CREATED WITH PROGRAM 'SETUP' FOR
C USE BY PROGRAM ‘MULTIFLO'. NETWORK SPECIFICATION DATA RESIDES
C ON FORTRAN UNIT 01 AND NETWORK TRAFFIC SPECIFICATION DATA
C RESIDES ON FORTRAN UNIT 02.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
C

SUBROUTINE LOAD

IMPLICIT NONE
c
C AR AR ARNRAERAAA AR ARAR R AN INCLUDE COWON BLOCKS RAARARRAARR AR A AN kg kR
C

INCLUDE 'PARAM.DIM'

INCLUDE 'NETWRK.PRM'

INCLUDE ‘CONVRG.PRM'
C
C AARAC AR AR RARAER A RAR R AR LOCAL VARIABLE DEE‘INITIONS AR A ARRAAAAARNRARARR A
C

INTEGER 1
C DO LOOP INDEX
C
C I EE R B EEREEESEE R NEENESEN] EXECUTABLE CODE RARRAARRARRARANARRAARARAR S ARR &
C TERMINATION PARAMETERS. MAXITER GIVES THE MAX # OF ITERATIONS
C TOL 1S A SOLUTION ACCURACY TOLERANCE. RECOMMENDED VALUES
C ARE 0.01 TO 0.0001. THE PROPER VALUE OF TOL IS LARGELY
C INDEPENDENT OF THE PROBLEM SIZE.

MAXITER=20

TOL=0.01
c THE FOLLOWING PARAMETER MAKES SENSE ONLY FOR ROUTING PROBLEMS
C WHERE AN M/M/1 QUEUING FORMULA IS USED FOR DELAY.
C IT GIVES THE THRESHOLD FRACTION OF CAPACITY BEYOND WHICH
C THE DELAY FORMULA IS TAKEN TO BE QUADRATIC.

MAXUTI=0.99
C
C LOAD THE NETWORK CONFIGURATION FROM FORTRAN UNIT 01
c
C NODE SPECIFICATIONS
c

READ (1, *)NN

DO I=1,NN

READ (1. *) FRSTOU (1), LASTOU (I)

END DO
C
c LINK SPECIFICATIONS -
c

READ (1, *)NA
C
c BITRATE (I) IS A PARAMETER ASSOCIATED WITH LINK I. IN THE
c DATA NETWORK ROUTING CONTEXT IT HAS THE MEANING OF
C TRANSMISSION CAPACITY OF LINK I.
c

DO I=1,NA

READ (1, *) STARTNODE (1) , ENDNODE (1) ., BITRATE (I)

END DO
c
Cc INPUT COMMODITY DATA FROM FORTRAN UNIT 02




READ (2, *) NU/.COMMOD
DO 1=1,NUMCCMOD
READ (2, *)ORGID (1) , STARTOD (I)
END DO
READ (2, *) NUMODPAIR
DO I=1,NUMODPAIR
READ (2, *)DEST (I) , INPUT_FLOW (I)
END DO
RETURN
END
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MULTIEFLO

MULTICOMMODITY FLOW ALGORITHM BASED ON A PATH FLOW FORMULATION
UPDATES THE PATH FLOWS OF OD PAIRS ONE AT A TIME ACCORDING TO
AN ITERATION OF THE PROJECTION TYPE.

DEVELOPED BY DIMITRI BERTSEKAS, BOB GENDRON, AND WEI K TSAI

BASED ON THE PAPERS:

1) BERTSEKAS,D.P., "A CLASS OF OPTIMAL ROUTING ALGORITHMS
FOR COMMUNICATION NETWORKS", PROC. OF STH ITERNATIONAL
CONFFRENCE ON COMPUTER COMMUNICATION (ICCC-80),
ATLANTA, GA., OCT. 1980, PP.71-76.

2) BERTSEKAS,D.P. AND GAENI,E.M., "PROJECTION METHODS
FOR VARIATIONAL INEQUALITIES WITH APPLICATION TO
THE TRAFFIC ASSIGNMENT PROBLEM", MATH. PROGR. STUDY,17,
D.C.SORENSEN AND J.-B. WETS (EDS), NORTH-HOLLAND,
AMSTERDAM, 1982, PP. 139-159.

3) BERTSEKAS,D.P., "OPTIMAL ROUTING AND FLOW CONTROL
METHODS FOR COMMUNICATION NETWORKS", IN ANALYSIS AND
OPTIMIZATION OF SYSTEMS, (PROC. OF 5TH INTERNATIONAL
CONFERENCE ON ANALYSIS AND OPTIMIZATION, VERSAILLES,
FRANCE) , A. BENSOUSSAN AND J.L. LIONS (EDS),
SPRINGER-VERLAG, BERLIN & NY,1982, PP. 615-643.

4) BERTSEKAS,D.P. AND GAENI, E.M., "PROJECTED NEWTON
METHODS AND OPTIMIZATION OF MULTICOMMODITY FLOWS",
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, DEC. 1983.

SUBROUTINE MULTIFLO
IMPLICIT NONE
AaARAAAARARAAR L TNCLUDE COMMON BLOCKS AAfA4Rsasatsdatdstataadartsn

INCLUDE 'PARAM.DIM'
INCLUDE ‘'NETWRK.PRM'
INCLUDE °'CONVRG.PRM'
INCLUDE 'PATHS.BLK'

NODE ARRAYS (LENGTH NN) :

FRSTOU (NODE) - FIRST ARC OUT OF NODE i
LASTOU (NODE) - LAST ARC OUT OF NODE
NOTE: THE ARC LIST MUST BE ORDERED IN SEQUENCE SO
THAT ALL ARCS OUT OF ANY NODE ARE GROUPED TOGETHER

ARC ARRAYS (LENGTH NA) :
FA(ARC) - THE TOTAL FLOW OF ARC

STARTNODE (ARC) - THE HEAD NODE OF ARC
ENDNODE (ARC) - THE TAIL NODE OF ARC
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CCMYODITY LENGTH ARRAYS (LENGTH NUMCOMMOD) :

ORGID (COMMODITY) - THE NODE ID OF THE ORIGIN OF COMMODITY
STARTOD (COMMODITY) -~ THE STARTING OD PAIR IN THE ODPAIR LIST

NOTE:

CORRESPONDING TO THE ORIGIN IN POSITION RANK
THIS SCHEME ASSUMES THAT OD PAIRS ARE LISTED IN SEQUENCE
I.E. THE OD PAIRS CORRESPONDING TO THE COMMODITY ONE
ARE LISTED FIRST. THEY ARE
FOLLOWED BY THE OD PAIRS OF THE COMMODITY TWO
AND SO ON.

ODPAIR ARRAYS (LENGTH NUMOD) :
DEST (OD) - GIVES THE DESTINATION OF ODPAIR OD
INPUT_FLOW (OD) - GIVES THE INPUT TRAFFIC OF ODPAIR OD

PATH ARRAYS (LENGTH DYNAMICALLY UPDATED) :
PATHID (PATH) - THE ITERATION # AT WHICH PATH WAS GENERATED
NEXTPATH (PATH) - THE NEXT PATH FOR THE SAME OD PAIR FOLLOWING

FP (PATH)

PATH DESCRIPTION LIST ARRAY (LENGTH MAXITER*NUMCOMD*NN)
PRED (NODE, ITER, COMMODITY) - THIS TRIPLE INDEXED ARRAY SPECIFIES THE

RARARARARA R A A kR LOC_AL VARIABLE DEE‘INITIONS RRRARRARAARARAR R AR R AR R NR R R

INTEGER*2 PRED (NNN, NMAXITER ,NNCRIG)

LOGICAL

LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAI,

REAL

PATH. IT EQUALS O IF PATH IS THE LAST FOR THAT OD PAIR
- THE FLOW CARRIED BY PATH

SHORTEST PATH TREE GENERATED AT ITERATION ITER
& CORRESPONDING TO THE ORIGIN ASSOCIATED W/ COMMODITY
IT GIVES THE LAST ARC ON THE SHORTEST PATH FROM ORIGIN TO NODE.

PATH DESCRIPTION ARRAY — CONTAINS SHORTEST
PATH TREES FOR ALL ITERATIONS
SPNEW
LOGICAL INDICATING A NEW PATH FOUND
SAME
LOGICAL INDICATING A NEW SHORTEST PATH ATREADY EXISTING
NODE
NODE IDENTIFIER
DESTOD
THE DESTINATION NODE OF AN OD PAIR
ARC
DO LOOP INDEX FOR ARCS
PATH
A PATH INDEX
NUMLIST
TOTAL NUMBER OF ACTIVE PATHS FOR OD PAIR UNDER CONSIDERATION
ITER
SPECIFIC ITERATION
N1,N2
TEMPORARY VARIABLES
MINFDER
THE LENGTH FOR A SHORTEST PATH
MINSDER
THE SECOND DERIVATIVE LENGTH FOR THE SHORTEST PATH
TMINSDER
TEMPORARY VALUE FOR SECOND DERIVATIVE LENGTH OF SHORTEST PATH
INCR
TOTAL SHIFT OF FLOW TO THE MINIMUM FIRST DERIVATIVE LENGTH Pk'ﬂ-‘
PATHINCR
SHIFT OF FLOW FOR A GIVEN PATH




REAL  FLOW

FLOW FOR A PATH
REAL  FDER

THE ACCRUED LENGTH ALONG A PATH
REAL  SDER

THE ACCRUED SECOND DERIVATIVE LENGTH ALONG A PATH
REAL  TEMPERROR

TEMPORARY STORAGE FOR CONVERGENCE ERROR
REAL  FDLENGTH (NMAXITER)

ARRAY OF LENGTHS OF PATHS FOR AN OD PAIR
REAL  SDLENGTH (NMAXITER)

ARRAY OF SECOND DERIVATIVE LENGTHS OF PATHS FOR AN OD PAIR
INTEGER PATHLIST (NMAXITER)

ARRAY OF ACTIVE PATHS FOR AN OD PAIR
INTEGER COMMODITY

DO LOOP INDEX FOR THE OD PAIR ORIGINS
INTEGER ORIGIN

SPECIFIC ORIGIN
INTEGER I

DO LOOP INDEX
INTEGER OD

OD DO LOOP INDEX
INTEGER K

DO LOOP INDEX
INTEGER SHORTEST

THE SHORTEST PATH
LOGICAL MEMBER (NNA)

LOGICAL FOR AN ARC INCLUDED IN THE SHORTEST PATH

REAL  DLENGTH

DIFFERENCE IN PATH LENGTHS FOR THE TRAFFIC
REAL  DICAL

ARC LENGTH
REAL  D2CAL

DERIVATIVE OF ARC LENGTH

ARRARARAARAAAARR AR AR A& EXECUTABLE CODE RRARARARRAARARARAARRRAARRAARAR AR

AR RRAAAR R AR A ARRRRRARRAAA AN RARAR AR RANR Ak & &

* INITIALIZATION

AARRARAARAKRRAR AR RRARRRRARAAAARAARRAARRRA AR R R

o000 0O o o o o a o o o 0o o 0 0o o o 0

DO 5 ARC=1,NA
FA(ARC)=0.0
CONTINUE

Ow

DO I=1,NUMODPAIR
FP (1) =INPUT_FLOW (I)
ENDDO
STARTOD (NUMCOMMOD+1) =NUMODPAIR+1
NUMPATH=0
NUMI TER=1
DO 100 COMMODITY=1, NUMCOMMOD
ORIGIN=ORGID (COMMODITY)
CALL SP (ORIGIN,COMMODITY)
DO 10 I=1,NN
PRED (I, 1,COMMODITY)=PA (I)
0 CONTINUE

LOOP OVER OD PAIRS OF COMMODITY

aQ0r

,vzv
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N1=STARTOD (COMMODITY)
N2=STARTOD (COMMODITY+1) -1
DO 50 OD=N1,N2
NUMPATH =NUMPATH +1
PATHID (NUMPATH) =1
NEXTPATH (NUMPATH) =0
FLOW=FP (NUMPATH)
NODE=DEST (OD)
DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
FA (ARC) =FA (ARC) +FLOW
NODE=STARTNODE (ARC)
END DO
CONTINUE
CONTINUE

INITIALIZE THE MEMBER ARRAY
DO 70 ARC=1,NA
MEMBER (ARC) = .FALSE.
CONTINUE
INITIALIZE THE TOTAL DELAY
CALL DELAY (DTOT (NUMITER))
OUTPUT THE CURRENT INFORMATION TO DISK

CALL PRFLOW
AAKARARAARARA AR A AR K R AR AR AR AN R R AR AR RARA R AARARRAR

* END OF INITIALIZATION

RAARRE A A AR AR X A AR AKX AR EAEAANAAAARAE R S A ARRARRAARAA KR

#+2s+ START NEW ITERATION #x%##

NUMITER=NUMITER+1
CURERROR=0

taxx 100P OVER ALL COMMODITIES ***#

DO 1000 COMMODITY=1, NUMCOMMOD
ORIGIN=ORGID (COMMODITY)
CALL SP (ORIGIN,COMMODITY)
DO 150 I=1,NN
PRED (I, NUMITER, COMMODITY) =PA (I)
CONTINUE

*xx+ T,00P OVER OD PAIRS OF COMMODITY
N1=STARTOD (COMMODITY) -
N2=STARTOD (COMMODITY+1) -1

DO S00 OD=N1,N2

CHECK IF THERE IS ONLY ONE ACTIVE PATH AND IF SO SKIP
THE ITERATION

IF (NEXTPATH(OD) .EQ.0) THEN
NODE=DEST (OD)
DO WHILE (NODE.NE.ORIGIN)




ARC=PA (NODE)
IF (ARC.NE.PRED (NODE,1,COMMODITY)) GO TO 180
NODE=STARTNOD;: (ARC)
END DO
GO TO 500
END IF

80 CONTINUE
MARK THE ARCS OF THE SHORTEST PATH

DESTOD=DEST (OD)

NODE=DESTOD

DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
MEMBER (ARC) =. TRUE .
NODE=STARTNODE (ARC)

END DO

GENERATE LIST OF ACTIVE PATHS FOR OD PAIR

aOaon

r NUMLIST=1
! PATHLIST (1) =OD
PATH=NEXTPATH (OD)
DO WHILE (PATH.GT.O)
NUMLIST=NUMLIST+1
PATHLIST (NUMLIST) =PATH
PATH=NEXTPATH (PATH)
END DO

DETERMINE 1ST & 2ND DERIVATIVE LENGTH OF ACTIVE PATHS
ALSO DETERMINE WHETHER THE CALCULATED SHORTEST PATH
IS ALREADY IN THE LIST

a0

SPNEW=.TRUE.
DO 200 K=1,NUMLIST
SAME=.TRUE.
! FDER=0
SDER=0
TMINSDER=0 -
PATH=PATHLIST (K)
ITER=PATHID (PATH)
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)
ARC=PRED (NODE, I TER , COMMODITY)
CALL DERIVS (COMMODITY, FA (ARC) , ARC,D1CAL,D2CAL)
FDER=FDER+D1CAL
IF (.NOT.MEMBER (ARC)) THEN
SDER=SDER+D2CAL
SAME=.FALSE.
ELSE
SDER=SDER-D2CAL
TMINSDER=TMINSDER+D2CAL
END IF
NODE=STARTNODE (ARC)
END DO
IF (SAME) THEN
SPNEW=.FALSE.
SHORTEST=PATH
FDLENGTH (K) =FDER




MINFDER=FDER
MINSDER=TMINSDER
ELSE
FDLENGTH (K) =FDER
SDLENGTH (K) =SDER
END IF
200 CONTINUE

C *x+ INSERT SHORTEST PATH IN PATH LIST IF IT IS NEW ##*

IF (SPNEW) THEN
NUMPATH=NUMPATH+1
SHORTEST=NUMPATH
PATHID (NUMPATH) =NUMI TER
NEXTPATH (PATHL ST (NUMLIST) ) =NUMPATH
NEXTPATH (NUMPATH) =0
MINFDER=0
MINSDER=0
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
CALL DERIVS (COMMODITY,FA (ARC) , ARC,D1CAL,D2CAL)
MINFDER=MINFDER+D1CAL
MINSDER=MINSDER+D2CAL
NODE=STARTNODE (ARC)
END DO
END IF

#+%* UPDATE PATH & LINK ELOWS **%#

Qa0

INCR=0
TEMPERROR=0
DO 250 K=1,NUMLIST
DLENGTH=FDLENGTH (K) ~MINFDER
IF (DLENGTH.GT.O) THEN
PATH=PATHLIST (K)
FLOW=FP (PATH)
IF ((FLOW.EQ.0.0).AND. (K.GT.1)) THEN
NEXTPATH (PATHLIST (K-1) ) =NEXTPATH (PATH)
GO TO 250
END IF
PATHINCR=DLENGTH/ (SDLENGTH (K) +MINSDER)
IF (FLOW.LE.PATHINCR) THEN
FP (PATH) =0.0
PATHINCR=FLOW
ELSE
FP (PATH) =FLOW-PATHINCR
END IF
INCR=INCR+PATHINCR
TEMPERROR=TEMPERROR +FLOW*DLENGTH/FDLENGTH (K)
ITER=PATHID (PATH)
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)
ARC=PRED (NODE, ITER , COMMODI TY)
FA (ARC) =FA (ARC) ~PATHINCR
NODE=STARTNODE (ARC)
END DO
END IF
CONTINUE




T

C
¢ *4+ UPDATE THE ERROR CRITERION #**
c
CURERROR=AMAX1 (CURERROR , TEMPERROR / INPUT_ELOW (OD) )
C
Cc *2*4 UPDATE FLOWS FOR SHORTEST PATH *#t#
c
FP (SHORTEST) =FP (SHORTEST) + INCR
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
FA (ARC) =FA (ARC) + INCR
MEMBER (ARC) = .FALSE.
NODE=STARTNODE (ARC)
END DO
o
500 CONTINUE .
c
c #xsx* END OF LOOP FOR OD PAIRS CORRESPONDING TO COMMODITY
c tx22+ UPDATE TOTAL DELAY
c
CALL DELAY (DTOT (NUMITER) )
c
1000  CONTINUE
c
C CHECK IF THE # OF ACTIVE PATHS EXCEED THE ALLOCATED NUMBER
C
IF (NUMPATH.GT.NNUMPATH) THEN
WRITE (6, *) 'MAX # OF ALLOCATED PATHS EXCEEDED'
STOP
END IF
o
c OUTPUT THE CURRENT SOLUTION TO DISK
c
CALL PRELOW
c
c #2244 END OF ITERATION #####
C
c *+*+ IF THE ERROR IS SMALLER THAN TOL, OR THE LIMIT ON
c THE NUMBER OF ITERATIONS 1S REACHED RETURN
C ELSE GO FOR ANOTHER ITERATION
C
IF ((CURERROR.LT.TOL) .OR. (NUMITER .EQ.MAXITER)) THEN
RETURN
ELSE
GO TO 110
END IF
o
END
C RARRARRARA AR AR A El{D OF M‘J’LTIFLO ARAARARARRAARAARAR
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SHORTHEAP

'SHORTHEAP' SOLVES THE SHORTEST PATH PROBLEM BY
DIJKSTRA'S ALGORITHM AND A HEAP DATA STRUCTURE.
THIS ALGORITHM SHOULD BE USED WHEN THE NUMBER OF
DESTINATIONS FOR EACH COMMODITY IS SMALL RELATIVE
TO THE TOTAL NUMBER OF NODES.

INPUT:
S - THE STARTING NODE
COMMODITY - THE CORRESPONDING COMMODITY

OUTPUT:
PA(I) - THE LAST ARC ON THE SHORTEST PATH ENDINC AT NODE 1
DIST(I) - THE SHORTEST DISTANCE TO NODE 1

QOOO0OO00O0NO0O0O0N00O0O0n0n

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE SP (S,COMMODITY)
IMPLICIT NONE

ARRARARARRARRRNARA AR INCL[JDE ComoN BLOCKS RRARARRRARARARAR AR AR

o 0 0

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'
INCLUDE 'PATHS.BLK' -

I EEEEEEREEERREREERE] LOCAL VARIABLE DEFINITIONS REARRARRAARRRRAAAARAA R

REAL MIN

TEMPORARY MINIMUM VALUE
REAL D1,D2,DP

NODE DISTANCE
REAL XLARGE

BIG X BY DEFAULT
INTEGER S

INPUT NODE
INTEGER COMMODITY

INPUT COMMODITY
INTEGER P

NODE ALONG THE PATH OF S TO DESTINATIONS
INTEGER 1I
DO LOOP INDEX
J

INTEGER
DO LOOP INDEX
INTEGER ARC
DO LOOP INDEX
INTEGER ND
A NODE INDEX
INTEGER DNUMBER
# OF DESTINATIONS FOR COMMODITY
INTEGER N1
TEMPORARY VARIABLE
INTEGER N2
TEMPORARY VARIABLE
INTEGER UPNODE, DOWNNODE , DOWNNODE1 , LASTNODE
- VARIABLES USED IN UPDATING THE HEAP ARRAY
INTEGER CURRANK, NEWRANK

O o o o o o 0o o o a0 o o o a oao0n
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VARIABLES USED IN UPDATING THE HEAP ARRAY
INTEGER ENDIEAP

MARKS THE LAST ELEMENT OF THE HEAP ARRAY
INTEGER RANK (NNN)

RANK (NODE) GIVES THE RANK OF NODE IN THE HEAP
INTEGER NRANX (NNN)

NRANK (1) GIVES THE NODE OF RANK I IN THE HEAP
REAL D1CAL

FIRST DERIVATIVE OF DELAY WITH RESPECT TO LOAD
LOGICAL FIRSTITER

TRUE IF THIS IS THE FIRST ITERATION
LOGICAL SCAN (NNN)

LOGICAL INDICATING THAT A NODE HAS BEEN SCANNED
LOGICAL DSTATUS (NNN) —

LOGICAL SPECIFYING IF A NODE IS A DESTINATION

RAARAARAARRRRA AR AR EXECUTABLE CODE REAKARARARRRARRARARARARAA AR A AR R

XLARGE=1E15
D1CAL=1.0
P=S

DO 10 I=1,NN
DIST (I)=XLARGE
SCAN(I)=.FALSE.
DSTATUS (1) =.FALSE.
CONTINUE
DIST(S) =0
IF (NUMITER.EQ.1) THEN
FIRSTITER=.TRUE.
ELSE
FIRSTITER=.FALSE.
END IF

MARK THE DESTINATION NODES

N1=STARTOD (COMMODITY)

N2=STARTOD (COMMODITY+1) -1

DNUMBER=N2-N1+1

DO 15 I=N1,N2
DSTATUS (DEST (1) ) =. TRUE.

CONTINUE

INITIALIZE THE HEAP FLOOR
ENDHEAP=0
sav22 SCAN NODE P #*tar

CONTINUE
SCAN (P) =.TRUE.
IE (DSTATUS (P)) THEN
IF (DNUMBER.EQ.1) RETURN
DNUMBER=DNUMBER -1
END IF
IF (FRSTOU(P) .NE.O) THEN
DP=DIST (P)
DO 20 ARC=FRSTOU (P) , LASTOU (P)
ND=ENDNODE (ARC)
IF (.NOT.SCAN(ND)) THEN
IF (.NOT.FIRSTITER) THEN

e
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CALL DERIV1 (COMMODITY,FA (ARC) , ARC,D1CAL)
END IF
D2=DIST (ND) -
IF ND HAS NOT BEEN LABELLED INSERT IT IN THE HEAP
IF (D2.EQ.XLARGE) THEN
ENDHEAP=ENDHEAP+1
RANK (ND) =ENDHEAP
NRANK (ENDHEAP) =ND
END IF
D1=DP+D1CAL
IF (D1.LT.D2) THEN
PA (ND) =ARC
DIST (ND) =D1
CURRANK=RANK (ND)
NEWRANK=INT (CURRANK/2)
IF (NEWRANK.GE.1) THEN
UPNODE=NRANK (NEWRANK)
IF (D1.LT.DIST(UPNODE)) THEN
NRANK (CURRANK) =UPNODE
RANK (UPNODE ) =CURRANK
CURRANK=NEWRANK
GO TO 50
END IF
END IF
NRANK (CURRANK) =ND
RANK (ND) =CURRANK
END IF
END IF
CONTINUE
END IF

###4x+% FIND NEXT NODE TO SCAN #*t##xs

TEST FOR ERROR
IF (ENDHEAP.EQ.O) THEN
WRITE (6,*) 'ERROR IN THE SHORTEST PATH POUTINE'
STOP
END IF
P=NRANK (1)

RESTRUCTURE HEAP ARRAYS

LASTNODE=NRANK (ENDHEAP)
ENDHEAP=ENDHEAP-1
D1=DIST (LASTNODE)
CURRANK=1
NEWRANK=CURRANK + CURRANK
IF (NEWRANK.LE.ENDHEAP) THEN
DOWNNODE=NRANK (NEWRANK)
IF (NEWRANK.EQ.ENDHEAP) THEN
DOWNNODE 1=DOWNNODE
ELSE
DOWNNODE 1=NRANK (NEWRANK+1)
END IF
IF (DIST (DOWNNODE) .LE.DIST (DOWNNODE1)) THEN
IF (D1.CT.DIST(DOWNNODE)) THEN
NRANK (CURRANK) =DOWNNODE
RANK (DOWNNODE ) =CURRANK
CURRANK=NEWRANK
GO TO 100




g

END IF
ELSE
IF (D1.GT.DIST (DOWNNODE1)) THEN
NRANK (CURRANK ) =DOWNNODE 1
RANK (DOWNNODE 1) =CURRANK
CURRANK=NEWRANK+1
GO TO 100
END IF
END IF
END IF
NRANK (CURRANK) =LASTNODE
RANK (LASTNODE) =CURRANK
GO TO 1000
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SHORTPAPE
'SHORTPAPE' SOLVES THE SHORTEST PATH PROBLEM BY
PAPE'S MODIFICATION OF BELLMAN'S ALGORITHM.

INPUT:
S - THE STARTING NODE
COMMODITY - THE CORRESPONDING COMMODITY

OUTPUT:
PA(I) - THE LAST ARC ON THE SHORTEST PATH ENDING AT NODE I
DIST(I) - THE SHORTEST DISTANCE TO NODE 1

CCCCCCCCLceeeecececceccccecccerceeceeceececcccceeccceccceecceceececececcececececececeee

SUBROUTINE SP (S, COMMODITY)
IMPLICIT NONE
ARARARRARARARRR AR R ARAAR INCLUDE ComoN BLOCKS RRARRRAARARARRARARARASARR A

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'
INCLUDE 'PATHS.BLK'

RERRARR AR R AP AR KRR LOCAL VARIABLE DEFINITIONS RARARRRRAARRARRARARARAR

REAL D1,DP
NODE DISTANCE
REAL XLARGE
BIG X BY DEFAULT
INTEGER ILARGE
INTEGER LARGER THAN THE NUMBER OF NODES
INTEGER S '
INPUT NODE
INTEGER COMMODITY
INPUT COMMODITY

INTEGER P

NODE PRESENTLY SCANNED
INTEGER I

DO LOOP INDEX
INTEGER ARC

DO LOCP INDEX
INTEGER ND

A NODE INDEX
INTEGER N1

TEMPORARY VARIABLE
INTEGER N2

TEMPORARY VARIABLE
INTEGER ENDQUEUE
MARKS THE LAST ELEMENT OF THE QUEUE ARRAY
REAL  DICAL
FIRST DERIVATIVE OF DELAY WITH RESPECT TO FLOW
LOGICAL FIRSTITER
TRUE IF THIS IS THE FIRST ITERATION
INTEGER Q (NNN)
QUEUE OF NODES TO BE SCANNED

sarasnrnannnasrrtat EXECUTABLE CODE A" %20 A rataaaa ARttt ataARAAARS
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XLARGE=1E15
1LARGE=NNN+1
D1CAL=1.0
DO 10 I=1,NN
DIST (I)=XLARGE
Q(1)=0
CONTINUE
IF (NUMITER.EQ.1) THEN
FIRSTITER=.TRUE.
ELSE
FIRSTITER=.FALSE.
END IF
DIST(S)=0
Q(S) =ILARGE
ENDQUEUE=S
P=S

xaxxxaasds START OF MAIN ALGORITHM *tastkasn
CONTINUE
xax+a SCAN NODE P #xans

N1=FRSTOU (P)

IF (N1.EQ.0) GO TO 201

N2=LASTOU (P)

DP=DIST (P)

DO 200 ARC=N1,N2
ND=ENDNODE (ARC)
IF (.NOT.FIRSTITER) THEN

CALL DERIV1(COMMODITY,FA (ARC) ,ARC,D1CAL)
END IF
D1=DP+D1CAL
***+ IF NO IMPROVEMENT TAKE ANOTHER ARC ***
IF (D1.GE.DIST(ND)) GO TO 200
#** CHANGE DISTANCE AND LABEL OF NODE ND #*+*
PA (1D) =ARC
DIST (ND)=D1
IF (Q(ND)) 160,140, 200
**+ IF ND HAS NEVER BEEN SCANNED INSERT IT AT THE END
OF THE QUEUE #*#*
Q (ENDQUEUE) =ND
ENDQUEUE=ND
Q (ND) =ILARGE
GO TO 200
#*++ IF ND HAS ALREADY BEEN SCANNED ADD IT AT THE
BEGINNING OF THE QUEUE AFTER NODE P *#**

Q (ND) =Q (P)
Q(P)=ND
IF (ENDQUEUE.EQ.P) ENDQUEUE=ND

CONTINUE

*+* GET NEXT NODE FRCM THE TOP OF THE QUEUE ***

N1=Q(P)

t** FLAG P AS HAVING BEEN SCANNED ***

Q(P)=-1




P=N1
**+ IF THE QUEUE IS NOT EMPTY GO BACK TO SCAN NEXT NODE ##**

IF (P.LT.ILARGE) GO TO 100

O OO0

RETURN
END




A
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DELAY

DELAY COMPUTES THE TOTAL M/M/1 DELAY IN ROUTING COMMODITIES FROM |
SOURCES TO SINKS. ?
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SUBROUTINE DELAY (DT)
IMPLICIT NONE

ARRARAARRRAARR R AKX INCLUDE COMMON BLOCKS RARRAARARRRAAAARRARAARARR R

e NgNe!

INCLUDE 'PARAM.DIM’

INCLUDE 'PATHS.BLK'

INCLUDE °‘NETWRK.PRM'

INCLUDE 'CONVRG.PRM'

ARRRARRAARRA RS Rt A 42 ARGUMENT DEFINITIONS *AAfastadtasattansdrntnasn
ON OUTPUT:

REAL DT
TOTAL SYSTEM DELAY

ARRARRAARR A AR A AR R R KRR EXTERNAL FIJNCTIONS REE‘ERENCED ARARRRARARARRAARR A

REAL DCAL
DELAY AS A FUNCTION OF FLOW

RARARRAAARRAAR AR A& LOCAL VARIABLE DEFINITIONS ARRRRARARRRARAAAARRRERAARRA

a0 o0onan OO0

INTEGER K
DO LOOP INDEX

—

RARAARRARARRARAAR A AR AR K A R & EXEC‘LITABLE CODE ARARRRAARARKRKRARARRAARAK AR A A

LOOP OVER ALL LINKS AND ACCRUE TOTAL DELAY

OO0 nn

DT=0.
DO 50 K=1,NA
DT=DT+DCAL (FA (K) . K)
50 CONTINUE

RETURN
END
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DCAL

'DCAL’' COMPUTES THE DELAY ACROSS A SPECIFIED ARC GIVEN THE FLOW.
THE DELAY IS ASSUMED TO BE CONSISTENT WITH M/M/1 QUEUEINZ FOR
FLOWS BELOW A MAXIMUM UTILIZATION AND QUADRATIC BEYOND WITH
CONTINUITY IN THE DERIVATIVES AT THE MAXIMUM UTILIZATION.

CCCCCCCCCCCCCCCCCCCLCecccceccceceeecececececeeeeecccceeeeeccecceceeecceecceccee

REAL FUNCTION DCAL (X, ARC)
IMPLICIT NONE

aaaassrnisasstrsar TNCLUDE COMMON BLOCKS “ttattanassnssantannstns
INCLUDE 'PARAM.DIM'

INCLUDE 'NETWRK.PRM'

INCLUDE 'CONVRG.PRM'

INCLUDE 'PATHS.BLK'

IS S SRR ERRESRERER R ARGUMENT DEE‘INITIONS RAAKRRARRARARSRARSARNRAACRARS

REAL X

INPUT FLOW FOR THE ARC
INTEGER ARC

INPUT ARC

RRRRARARAARRR R AR LOCAL VARIABLE DEFINITIONS ARRRAAARANARARRAARR R R

REAL RATE
MAXIMUM LINK CAPACITY

REAL Y

TEMPORARY VARIABLE
REAL  Z

TEMPORARY VARIABLE
REAL QO

ZEROTH ORDER TERM IN THE QUADRATIC APPROXIMATION FOR
OVERLOADED LINKS
REAL Q1
FIRST ORDER TERM IN THE QUADRATIC APPROXIMATION
REAL Q2
SECOND ORDER TERM IN THE QUADRATIC APPROXIMATION
REAL  EXCESS
FLOW BEYOND THE MAXIMUM ALLOWABLE UTILIZATION

RARAARRRARAAARARN AR Ak &k & EXECUTABLE CODE RRARARAARARARARRARARAAAARAARARRR

RATE=BITRATE (ARC)
Y=MAXUTT *RATE

M/M/1 DELAY

IF (X.LT.Y) THEN
DCAL=X/ (RATE-X)

ELSE

QUADRATIC APPROXIMATION TO AVOID OVERFLOWS

EXCESS=X-Y




2
Z=RATE-Y
Q0=Y/Z
Q1=Q0/ (MAXUTI *Z)
Q2=01/Z
DCAL=Q0+Q1*EXCESS+Q2*EXCESS**2
ENDIF
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCT
c
c DERIVS
Cc
c 'DERIVS' COMPUTES THE DERIVATIVES OF DELAY WITH RESPECT TO FLOW FOR
c LINKS. BELOW A MAXIMUM UTILIZATION, M/M/1 DELAY IS ASSUMED TO APPLY
c WHEREAS A QUADRATIC APPROXIMATION IS ASSUMED FOR UTILIZATIONS BEYOND
C THE MAXIMUM. THE DERIVATIVES ARE CONTINUOUS AT THE MAXIMUM
C UTILIZATION.
o
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c
SUBROUTINE DERIVS (COMMODITY.X,ARC,D1CAL,D2CAL)
IMPLICIT NONE
c
C ARARRRARARRSRAAAR A AR A INCLUDE COmON BLOCKS SR NARRRRRARRAR R AR R RAR AR
o

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'’
INCLUDE 'CONVRG.PRM'
INCLUDE 'PATHS.BLK'

terrARRrAARARRARRAAL  ARGUMENT DEFINITIONS fttftsnnsssssnansasntnanns
ON INPUT:

INTEGER COMMODITY
THE CORRESPONDING COMMODITY

REAL X
FLOW IN THE SPECIFIED LINK
INTEGER ARC -
THE SPECIFIED LINK
CN OUTPUT:

REAL D1CAL

ARC LENCTH (1ST DERIVATIVE OF DELAY)
REAL D2CAL

FIRST DERIVATIVE OF ARC LENGTH

EERRARARARRAARARR LOCAL VARIABLE DEE‘INITIONS RARARARRAAARERSARRARARAES

REAL . MAXI

MAXIMUM ALLOWABLE FLOW FOR LINK FOR M/M/1 QUEUEING DtLAY
REAL RATE

THE MAXIMUM FLOW CAPACITY FOR THE LINK
REAL EXCESS

FLOW BEYOND THE MAXIMUM ALLOWABLE FLOW

REAL D1
TEMPCRARY VARIABLE
REAL T

O O o0 0o o o000 O o000 O OO0 0000

TEMPORARY VARIABLE
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KRR RRRRARRARR R AR R AR AR EXECUTABLE CODE RARARAARRARCAAARAAARAARRARANRRR S

RATE=BITRATE (ARC)
MAXT=MAXUTI *RATE
EXCESS=X-MAXI

IF (EXCESS.LE.0.0) THEN
DERIVATIVES OF M/M/1 QUEUEING DELAY

T=RATE-X
D1CAL=RATE/T**2
D2CAL=2.0*D1CAL/T

ELSE

DERIVATIVES OF THE QUADRATIC APPROXIMATION

T=RATE-MAXI
D1=RATE/T**2
D2CAL=2.0*D1/T
D1CAL=D1+D2CAL*EXCESS

END IF

RETURN

END
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DERIV1

'DERIV1' COMPUTES THE FIRST DERIVATIVE OF DELAY WITH RESPECT

TO FLOW FOR LINKS. BELOW A MAXIMUM UTILIZATION, M/M/1 DELAY IS
ASSUMED TO APPLY WHEREAS A QUADRATIC APPROXIMATION IS ASSUMED FOR
UTILIZATIONS BEYOND THE MAXIMUM. THE DERIVATIVES ARE CONTINUOUS
AT THE MAXIMUM UTILIZATION.
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SUBROUTINE DERIV1 (COMMODITY, X,ARC,D1CAL)
IMPLICIT NONE

aesanehrranerrrrsasr  TNCLUDE COMMON BLOCKS A%ttt ttassagttsaastannan
INCLUDE 'PARAM.DIM'

INCLUDE 'NETWRK.PRM'

INCLUDE 'CONVRG.PRM'

INCLUDE 'PATHS.BLK'

sasanarrannrasasses ARCUMENT DEFINITIONS R R AR ARARRAAAARAARARAAARS
ON INPUT:

INTEGER COMMODITY
THE CORRESPONDING COMMODITY

REAL X
FLOW IN THE SPECIFIED LINK
INTEGER ARC

THE SPECIFIED ARC

ON OUTPUT:
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REAL

D1CAL
ARC LENGTH (1ST LERIVATIVE OF DELAY)

snaeaasadagennnes  [OCAL VARIABLE DEFINITIONS AAAAR AR AR AR AR R AR RN A AR A

REAL MAXI
MAXIMUM ALLOWABLE FLOW FOR LINK FOR M/M/1 QUEUEING DELAY
REAL RATE : \
THE MAXIMUM FLOW CAPACITY FOR THE LINK
REAL  EXCESS
FLOW BEYOND THE MAXIMUM ALLOWABLE FLOW
REAL D1
TEMPORARY VARIABLE o
REAL T
TEMPORARY VARIABLE
REAL D2CAL 2
TEMPORARY VARIABLE
Ak AR ,'. Pala el cu-Q'oo.t‘tn.ttq...*“.,,gq‘..“..
JELEXCESS ]
‘)lib\l.,-r:{r i >
DERIVAYL L VI
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PRELOW

'"PRELCW' OUTPUTS INTERMEDIATE RESULTS IN THE MULTIFLO ALGORITHM.
ITERATION #, DELAY, NUMBER OF ACTIVE PATHS GENERATED AND
CONVERGENCE ARE THE PRIMARY OUTPUTS.
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SUBRGUTINE PREFLOW
IMPLICIT NONE

AARAARAA KA R A KA K& INCLIJDE COmoN BLOCKS KRKERRRAARRARARARRAARAARR AR &
INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM' -
INCLUDE 'CONVRG.PRM' :
INCLUDE 'PATHS.BLK'
ARRRARA KRR A ARR LOCAL VARIABLE DEFINITIONS RARRKA AR RR A AR RKRRAARRRAARSR
LOGICAL FIRFLG

FIRST PASS FLAG FOR OUTPUT CONTROL
INTEGER I

DO LOOP INDEX
I EEEEEEESEEREERE RS LOCAL DATA INITIAIJIZATION AARRRRKARRAARR AR AR
DATA FIRFLG/.TRUE./
ON THE VERY FIRST PASS, OUTPUT THE CONTENTS OF INPUT BLOCKS TO FILE

IF (FIRFLG) THEN

WRITE(6’t) "ARARARAARRRRRARNARARARARARRAARARAANNRRARARARKR '

WRITE (6,*) ' * MULTIFLO SUMMARY a
WRITE(6'*) "AA AR RAARARAAARNRARKRARAARAANRARNARARRRAARANRRR?
WRITE (6,%) " °

WRITE(6't) P ARAAARARRARNRARRNRAAKRARNRARRARRKRRRAKAAARARRA Y
WRITE (6,*) ' * INITIALIZATION DATA *
WRITE(G'Q) " AR AR AR R AR AR RR RN R AR AR AR R ARRARRARARARR AR
WRITE (6,%) "

WRITE (6, *) '"NETWORK SPECIFICATION DATA:'

WRITE (6,%) " '

WRITE (6, *) '"NODE SPECIFICATIONS'
WRITE (6, *) '"NUMBER OF NODES:',NN

WRITE (6, *) "NODE # FRSTOU LASTOU'
DO I=1,NN
WRITE (6, *) I, FRSTOU (I) , LASTOU (I)
END DO
WRITE (6,%) '

WRITE (6,*) 'LINK SPECIFICATIONS:'
WRITE (6, *) 'NUMBER OF LINKS:',NA

WRITE (6, *) 'LINK # STARTNODE ENDNODE BITRATE'
DO I=1,NA
WRITE (6.*) I, STARTNODE (1) , ENDNODE (1), BITRATE (I)
END DO
WRITE (6,%) ' '

WRITE (6, *) 'COMMODITY SPECIFICATIONS'
WRITE (6, *) 'NUMBER OF COMMODITIES: ', NUMCOMMOD

RS

2.




A
WRITE (6, *) 'COMMOD # ORGID STARTOD'

DO I1=1,NUMCOMMOD
WRITE (6, *)I,0RGID(I),STARTOD (I)

END DO

WRITE(6,*)' '

WRITE (6, *) 'OD PAIR SPECIFICATIONS' —

WRITE (6,*) ‘NUMBER OF OD PAIRS: ',NUMODPAI
WRITE (6, *) 'OD PAIR # DEST INPUT FLOW'

DO 1=1,NUMODPAIR -
WRITE (6. %) 1,DEST(I), INPUT_FLOW (1)

END DO

WRITE (6,%) "' '

WRITE(6't) T RARANR AR R R R AR AR KR ANRRARARARRARRARARKA N R A& '

WRITE(6,*)'* MULTIFLO DATA BY ITERATION *!
WRITE (6,%) "* A X a A kAR KR A AR KRR A AR R AR XA AR AR KA AR R AN AR
WRITE (6, *) 'ITERATION # TOTAL DELAY CONVERGENCE NUMBER OF'
WRITE (6, *) * ERROR ACTIVE'
WRITE (6,*) PATHS'
FIRFLG=.FALSE.

END IF

IF (NUMITER.GT.0) THEN
WRITE (6, *) NUMITER, DTOT (NUMITER) , CURERROR , NUMPATH
END IF
RETURN
END




MAXIMUM NUMBER OF ELEMENTS OF PATH
DESCRIPTION ARRAY (USED IN MULTIFLO1)

a6
C 'INCLUDE®' FILE PARAM.DIM
C
o 'PARAM.DIM' CONTAINS THE ARRAY DIMENSIONS
o
C AARRAARRR A AR ARKARAR NE'I'WORK PARAMETERS ARRRRARRRAARRRARARARRAAR S
C
PARAMETER NNN=100
C MAXIMUM NUMBER OF NODES
PARAMETER NNA=500
C MAXIMUM NUMBER OF ARCS
PARAMETER NNUMOD=1000
C MAXIMUM NUMBER OF OD PAIRS
PARAMETER NNUMPATH=10000
C MAXIMUM NUMBER OF PATHS FOR CONSIDERATION
PARAMETER NMAXITER=50
Cc MAXIMUM NUMBER OF ITERATIONS ALLOWED
PARAMETER NNORIG=100
C MAXIMUM NUMBER OF COMMODITIES
PARAMETER NINDEX=100000
Cc
o
C




W A . ' —

Cc
Cc
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C *INCLUDE' FILE NETWRK.PRM
C
l C "NETWRK.PRM' CONTAINS THE NETWORK SPECIFICATION PARAMETERS
C
COMMON /NETWORK/
: & NN, FRSTOU, LASTOU,
. & NA, STARTNODE , ENDNODE , BITRATE,
1 & NUMCOMMOD, ORGID, STARTOD,
] & NUMODPAIR,DEST, INPUT_FLOW
C
INTEGER*2 NN
C NUMBER OF NODES IN THE NETWORK
INTEGER*2 FRSTOU (NNN)
C THE FIRST ARC EMANATING FROM A NODE
INTEGER*2 LASTOU (NNN)
C THE FINAL ARC EMANATING FROM A NODE
C
INTEGER*2 NA
C NUMBER OF LINKS (ARCS) IN THE NETWORK
INTEGER*2 STARTNODE (NNA)
C THE START NODE FOR AN ARC
INTEGER*2 ENDNODE (NNA)
C THE END NODE FOR AN ARC
REAL BITRATE (NNA)
C THE LINK CAPACITY IN BITS/SECOND
C
INTEGER*2 NUMCOMMOD
o THE NUMBER OF COMMODITIES IN THE NETWORK
INTEGER*2 ORGID (NNORIG)
C THE NODE NUMBER OF THE ORIGIN
INTEGER*2 STARTOD (NNORIG)
C THE POINTER TO THE STARTING NODE IN AN OD PAIR
C
INTEGER*2 NUMODPAIR
C THE NUMBER OF OD PAIRS
INTEGER*2 DEST (NNUMOD)
C THE DESTINATION NODE OF TRAFFIC IN AN OD PAIR
REAL INPUT_FL.OW (NNUMOD)

THE INPUT TRAFFIC TO THE NODE IN BITS/SECOND




— — Y

¥

C *INCLUDE' FILE CONVRG.PRM
o
C 'CONVRG.PRM' CONTAINS THE CONVERGENCE PARAMETERS FOR THE
o NETWORK FLOW PROBLEM
c

COMMON /CONVRG/

& MAXITER , TOL,MAXUTI ,OUTPFL

o

INTEGER MAXITER
o MAXIMUM NUMBER OF ITERATIONS IN THE SOLUTION

, REAL TOL

o TOLERANCE ON SOLUTION ACCURACY

REAL MAXUTI
C MAXIMUM UTILIZATION FOR M/M/1 QUEUE DELAY

LOGICAL OUTPFL
OUTPUT CONTROL VARIABLE




C "INCLUDE' FILE PATHS.BLK
C
C 'PATHS.ELK' DEFINES THE ARRAYS NECESSARY TO MAINTAIN
C PATH FLOWS AND DESCRIPTION.
C
COMMON /PATHS/ !
& PA,FA,PATHID,NEXTPATH,FP,DIST,DTOT, CURERRCR, i
& NUMPATH, NUMI TER 5
C .
INTEGER*2 PA (NNN) ;
C THE LAST ARC ON A SHORTEST PATH TO A NODE ‘
REAL FA (NNA)
C THE FLOW IN ANY GIVEN LINK (ARC)
INTEGER PATHID (NNUMPATH)
C THE PATH IDENTIFIER FOR ANY GIVEN PATH
INTEGER NEXTPATH (NNUMPATH)
o THE NEXT PATH FOR THE SAME OD PAIR
REAL FP (NNUMPATH)
o THE FLOW OF A PATH i
REAL DIST (NNN) i
C SHORTEST DISTANCE TO A NODE FROM THE ORIGIN
REAL DTOT (NMAXITER)
C THE TOTAL DELAY BY ITERATION
INTEGER NUMITER
o CURRENT ITERATION NUMBER
REAL CURERROR
o CONVERGENCE ERROR (NORMALISED % OF FLOW NOT ON
C A SHORTEST PATH)
INTEGER NUMPATH
o NUMBER OF GENERATED PATHS

e e ettt * *
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SETUP

'SETUP' ACCEPTS INPUTS FROM THE TERMINAL AND CREATES DATA SETS
THAT REPRESENTS NETWORKS AND LOADS IN A FORM SUITABLE FOR
PROGRAM 'MULTIFLO’
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PROGRAM SETUP
IMPLICIT NONE

I EE R EEEEEEEEEEERER NN ] INCLUDE ComON BLOCKS ARA AN RAARNRRAARRA N ARARA R &

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'

IER S EEEEEEREE R R LOCAL VARIABLE DEFINITIONS I 2 2RSS RS RS R R RSN R

INTEGER TERMINAL_NODE
THE END NODE OF A LINK
INTEGER DESTOD
THE DESTINATION NODE OF AN OD PAIR
REAL BPS
MAXIMUM LINK CAPACITY
INTEGER NUMARC
NUMBER OF OUTGOING ARCS FOR A NODE IN THE NETWORK
REAL TRAFFIC
SPECIFIED INPUT TO AN OD PAIR
INTEGER 1
DO LOOP INDEX
INTEGER J
DO LOOP INDEX
INTEGER NOD
NUMBER OF OD PAIRS ASSOCIATED WITH A COMMODITY

I EEEEEEEREEEEREREEER EXECUTABLE CODE REARR AR RRANRRNANRN R AR AR R AR AR R R kR

GET THE NODE SPECIFICATIONS

NA=0
WRITE (6, *) ' INPUT THE # OF NODES'
READ (5, *) NN
DO I=1,NN
WRITE (6,*) 'FOR NODE',I,' ENTER # OF ARCS EXITING THE NODE'
READ (5, *, ERR=200) NUMARC
IF (NUMARC.GE.O) THEN
DO J=1,NUMARC
WRITE (6.*) '"FOR ARC',J,' AT NODE',I,’ ENTER TERMINAL NODE',
* AND MAXIMUM BITS/S'

ASK THE SAME QUESTION ON ERRORS

READ (5, *,ERR=100) TERMINAL_NODE , BPS

IF (TERMINAL_NODE.GT.NN) THEN
WRITE (6, *) 'TERMINAL NODE OUT OF BOUNDS'
GO TO 100

ELSE
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ENTER LINK BEGIN AND END NODES

NA=NA+1
ENDNODE (NA) =TERMINAL_NODE
BITRATE (NA) =BPS

END IF
STARTNODE (NA) =1
END DO
FRSTOU (1) =NA-NUMARC+1
LASTOU (I)=NA
ELSE
WRITE (6. *) 'NEGATIVE ARCS ILLEGAL'
GO TO 200
END IF
END DO

OD PAIRS SETUP

WRITE (6, *) 'ENTER THE NUMBER OF COMMODITIES IN THE NETWORK'
READ (5, *, ERR=1000) NUMCOMMOD
NUMODPATR=0
DO I=1, NUMCOMMOD -
WRITE (6, *) '"ENTER THE ORIGIN ID AND NUMBER OF DESTINATIONS FOR ',
'COMMODITY', I
READ (5, *, ERR=300) ORGID (I) ,NOD
IF (ORGID(I) .LE.NN) THEN
DO J=1,NOD
WRITE (6, *) "ENTER THE DESTINATION',J,' AND TRAFFIC FOR ',
' COMMODITY'

ASK THE SAME QUESTION ON ERRORS

READ (5, *, ERR=400) DESTOD, TRAFFIC
IF (DESTOD.GT.NN) THEN
WRITE (6, *) 'DESTINATION OD OUT OF BOUNDS, MAXIMUM-' NN
GO TO 400
ELSE
NUMODPAIR=NUMODPAIR+1
DEST (NUMODPAIR) =DESTOD
INPUT_FLOW (NUMODPAIR) =TRAFFIC

END IF
END DO

ELSE
WRITE(6,*) "ORIGIN IS OUT OF BOUNDS, MAX ORIGIN=',NN
GO TO 300

END 1IF

STARTOD (I)=NUMODPAIR-NOD+1

END DO

OUTPUT OF CONNECTIVITY DATA FOR DIRECT INPUT INTO 'MULTIFLO'
COMMON BLOCKS

WRITE (1, *)NN
DO I=1,NN
WRITE (1, *) FRSTOU (I) ,LASTOU (1)
END DG
WRITE (1, *)NA
DO I=1,NA
WRITE (1, *) STARTNODE (1) , ENDNODE (1) , BITRATE (1)
END DO




OUTPUT OF OD TRAFFIC DATA FOR DIRECT INPUT INTO 'MULTIFLO'
COMMON BLOCKS

eXeKeXe

WRITE (2. *)NUMCOMMOD
DO I=1,NUMCOMMOD

WRITE (2, *) ORGID (1) , STARTOD (1)
END DO
WRITE (2. *) NUMODPAIR
DO I=1,NUMODPAIR

WRITE (2.*)DEST(I), INPUT_FLOW(I)
END DO
STOP |
END




|

APPENDIX II: MULTIFLO1 Code

The only differences between MULTIFLO and MULTIFLOl1 are in the

DRIVER program and in the main algorithm subroutine MULTIFLO. These two

routines called DRIVER1 and MULTIFLO1, are listed below.
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DRIVER1

'DRIVER1' IS A SIMPLE EXECUTIVE TO INVOKE THE ‘MULTIFLO1’ COMMODITY
ROUTING PROGRAM. ‘'DRIVER1' INVOKES SUBPROGRAM 'LOAD' TO READ

DATA INTO ‘MULTIFLO1*' INPUT COMMON BLOCKS. FILES READ BY

'LOAD' ARE CREATED BY A TERMINAL SESSION WITH THE USER FOR

NETWORK DEFINITION THROUGH THE USE OF PROGRAM 'SETUP'.

EXECUTION STEPS FOR PROGRAM ‘'DRIVER1'
1) ASSIGN FORTRAN UNIT 01 AS CREATED BY PROGRAM ‘LOAD'
2) ASSIGN FORTRAN UNIT 02 AS CREATED BY PROGRAM 'LOAD'’
3) ASSIGN FORTRAN UNIT 06 AS A DESIGNATED OUTPUT FILE
E.G.:
$ ASSIGN NETWORK.DAT FOR0OO1
$ ASSICN TRAFFIC.DAT FORQOQ2
$ ASSIGN OUTPUT.DAT FORO06
CCCCCCCCCCCCCeeCcCeeeeeeeeereeecceceeeecececececceeceeceeceececececeececececeeceeeccceceececece

PROGRAM DRIVER1

LOAD FORTRAN UNIT 01 AND FORTRAN UNIT 02 FROM DISK AS CREATED
FROM PROGRAM 'SETUP'

OO0 aaaaoaoa0naaOaO0a0n00n0n0n

INCLUDE 'PARAM.DIM'

INCLUDE 'PATHS.BLK'

INCLUDE ‘'NETWRK.PRM'

INCLUDE 'CONVRG.PRM'

INTEGER COMMODITY,ORIGIN,DESTOD,OD,PATH
CALL LOAD

EXECUTE THE 'MULTIFLO1' NETWORK ALGORITHM. 'MULTIFLO1' SCHEDULES
ITS OWN OUTPUTS TO FORTRAN UNIT 06 ON EACH ITERATION
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INITIALIZE THE TIMER

CALL LIBSINIT_TIMER

CALL MULTIFLOl

RECORD THE COMPUTATION TIME
CALL LIB$SHOW_TIMER

PRINT MAX LINK UTILIZATION (RELEVANT FOR M/M/1 QUEUEING DELAY
OPTIMIZATION)

o000 0

UMAX=0.0
DO 100 I=1,NA
UMAX=MAX (UMAX ,FA (I) /BITRATE (I)) :
100 CONTINUE o
WRITE (6, *) 'MAXIMUM LINK UTILIZATION'
WRITE (6, *) UMAX

PRINT FINAL PATH FLOW INFO

a0nn

WRITE(6,*) 'ORIGIN / DESTINATION / PATH # / PATH FLOW'
DO 1000 COMMODITY=1, NUMCOMMOD

ORIGIN=ORGID (COMMODITY)

DO 500 OD=STARTOD (COMMODITY) , STARTOD (COMMODITY+1) -1
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DESTOD=DEST (OD)
PATH=0D

DO WHILE (PATH.GT.O)

WRITE (6, *) ORIGIN,DESTOD, PATH, FP (PATH)
PATH=NEXTPATH (PATH)

END DO
500 CONTINUE
1000 CONTINUE
STOP

END
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MULTIFLO1

MULTICOMMODITY FLOW ALGORITHM BASED ON A PATH FLOW FORMULATION
UPDATES THE PATH FLOWS OF OD PAIRS ONE AT A TIME ACCORDING TO
AN ITERATION OF THE PROJECTION TYPE.

DEVELOPED BY DIMITRI BERTSEKAS, BOB GENDRON, AND WEI K TSAI
BASED ON THE PAPERS:
1) BERTSEKAS,D.P., "A CLASS OF OPTIMAL ROUTING ALGORITHMS
FOR COMMUNICATION NETWORKS", PROC. OF STH ITERNATIONAL

CONFERENCE ON COMPUTER COMMUNICATION (ICCC-80),
ATLANTA, GA., OCT. 1980, PP.71-76.

2) BERTSEKAS,D.P. AND GAFNI,E.M., "PROJECTION METHODS
FOR VARIATIONAL INEQUALITIES WITH APPLICATION TO
THE TRAFFIC ASSIGNMENT PROBLEM", MATH. PROGR. STUDY,17,
D.C.SORENSEN AND J.-B. WETS (EDS), NORTH-HOLLAND,
AMSTERDAM, 1982, PP. 139-159.

3) BERTSEKAS,D.P., "OPTIMAL ROUTING AND FLOW CONTROL
METHODS FOR COMMUNICATION NETWORKS", IN ANALYSIS AND
OPTIMIZATION OF SYSTEMS, (PROC. OF STH INTERNATIONAL
CONFERENCE ON ANALYSIS AND OPTIMIZATION, VERSAILLES,
FRANCE), A. BENSOUSSAN AND J.L. LIONS (EDS),
SPRINGER-VERLAG, BERLIN & NY, 1982, PP. 615-643.

4) BERTSEKAS,D.P. AND GAFNI, E.M., "PROJECTED NEWTON
METHODS AND OPTIMIZATION OF MULTICOMMODITY FLOWS",
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, DEC. 1983.

CCCCCCCCCCCCCCCerLeeeeeecrceccteecececceececcccceecerecceceecceeececeeecceeccecc

0QN0OOACONaANNOONO0O0000NNAON0N000000000

SUBROUTINE MULTIFLO1
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A IMPLICIT NONE
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INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'
INCLUDE 'CONVRG.PRM'
INCLUDE 'PATHS.BLK'

00

NODE ARRAYS (LENGTH NN):

FRSTOU (NODE) - FIRST ARC OUT OF NODE

LASTOU (NODE) - LAST ARC OUT OF NODE
NOTE: THE ARC LIST MUST BE ORDERED IN SEQUENCE SO
THAT ALL ARCS OUT OF ANY NODE ARE GROUPED TOGETHER

ARC ARRAYS (LENGTH NA):

FA(ARC) - THE TOTAL FLOW OF ARC
STARTNODE (ARC) - THE HEAD NODE OF ARC
ENDNODE (ARC) - THE TAIL NODE OF ARC
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COMMODITY LENGTH ARPAYS (LENGTH NUMCOMMOD) :

ORGID (COMMODITY) - THE NODE ID OF THE ORIGIN OF COMMODITY
STARTOD (COMMODITY) - THE STARTING OD PAIR IN THE ODPAIR LIST
CORRESPONDING TO THE ORIGIN IN POSITION RANK
NOTE: THIS SCHEME ASSUMES THAT OD PAIRS ARE LISTED IN SEQUENCE
I.E. THE OD PAIRS CORRESPONDING TO THE COMMODITY ONE
ARE LISTED FIRST. THEY ARE
FOLLOWED BY THE OD PAIRS OF THE COMMODITY TWO
AND SO ON.

ODPAIR ARRAYS (LENGTH NUMOD) :
DEST(OD) - GIVES THE DESTINATION OF ODPAIR OD
INPUT_FLOW (OD) - GIVES THE INPUT TRAFFIC OF ODPAIR OD

PATH ARRAYS (LENGTH DYNAMICALLY UPDATED) :

PATHID (PATH) - POINItR TO THE BLOCK DESCRIBING PATH

IN THE PATH DESCRIPTION ARRAY

NEXTPATH (PATH) - THE NEXT PATH FOR THE SAME OD PAIR FOLLOWING
PATH. IT EQUALS O IF PATH IS THE LAST FOR THAT OD PAIR

FP (PATH) - THE FLOW CARRIED BY PATH

PATH DESCRIPTION LIST ARRAY (LENGTH DYNAMICALLY UPDATED)

PDESCR (INDEX) - THIS LONG ARRAY EXPLICITLY DESCRIBES ALL
ACTIVE PATHS. FOR ANY PATH, PATHID(PATH) IS A POINTER
TO PDESCR. IT GIVES THE ELEMENT
OF THE PDESCR ARRAY CONTAINING THE # OF ARCS IN THE PATH
(CALL IT NUMARC). THE ELEMENTS PATHID (PATH)-NUMARC TO
PATHID (PATH) -1 OF THE ARRAY PDESCR CONTAIN THE ARCS THAT
MAKE UP PATH STARTING FROM THE DESTINATION AND GOING TOWARDS
THE ORIGIN OF PATH.
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INTEGER*2 PDESCR (NINDEX)
PATH DESCRIPTION ARRAY - CONTAINS EXPLICIT
DESCRIPTION OF ALL ACTIVE PATHS.
LOGICAL SPNEW
LOGICAL INDICATING A NEW PATH FOUND
LOGICAL SAME
LOGICAL INDICATING A NEW SHORTEST PATH ALREADY EXISTING
INTEGER NODE
NODE IDENTIFIER
INTEGER DESTOD
THE DESTINATION NODE OF AN OD PAIR
INTEGER ARC
DO LOOP INDEX FOR ARCS .-
INTEGER PATH
A PATH INDEX
INTEGER NUMLIST
TOTAL NUMBER OF ACTIVE PATHS FOR OD PAIR UNDER CONSIDERATION
INTEGER ITER
SPECIFIC ITERATION
INTEGER N1,N2
TEMPORARY VARIABLES
REAL MINEFDER
THE LENGTH FOR A SHORTEST PATH
REAL MINSDER
THE SECOND DERIVATIVE LENGTH FOR THE SHORTEST PATH
REAL TMINSDER
TEMPORARY VALUE FOR SECOND DERIVATIVE LENGTH OF SHORTEST PATH
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INTEGER NUMARC

POINTER TO PDESCR

# OF ARCS IN A PATH
CAL MEMBER (NNA)
LOGICAL FOR AN ARC INCLUDED IN THE SHORTEST PATH
DLENGTH
DIFFERENCE IN PATH LENGTHS FOR THE TRAFFIC
D1CAL
ARC LENGTH
D2CAL
DERIVATIVE OF ARC LENGTH
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INITIALIZATION
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REAL INCR ;
c TOTAL SHIFT OF FLOW TO THE MINIMUM FIRST DERIVATIVE LENGTH PATH :
REAL PATHINCR :
C SHIFT OF FLOW FOR A GIVEN PATH *
REAL FLOW ;
, o FLOW FOR A PATH |
: REAL FDER =
5 o THE ACCRUED LENGTH ALONG A PATH
REAL SDER
c THE ACCRUED SECOND DERIVATIVE LENGTH ALONG A PATH ;
REAL TEMPERROR i
o TEMPORARY STORAGE FOR CONVERGENCE ERROR
REAL FDLENGTH (NMAXITER)
C ARRAY OF LENGTHS OF PATHS FOR AN OD PAIR
REAL SDLENGTH (NMAXI TER)
C ARRAY OF SECOND DERIVATIVE LENGTHS OF PATHS FOR AN OD PAIR i
INTEGER PATHLIST (NMAXITER)
C ARRAY OF ACTIVE PATHS FOR AN OD PAIR
INTEGER COMMODITY
C DO LOOP INDEX FOR THE OD PAIR ORIGINS
; INTEGER ORIGIN
; C SPECIFIC ORIGIN
* INTEGER I
C DO LOOP INDEX
INTEGER OD
C OD DO LOOP INDEX
INTEGER K
o DO LOOP INDEX
INTEGER SHORTEST
o THE SHORTEST PATH
INTEGER INDEX
o THE CURRENT LAST ELEMENT OF THE ARRAY PDESCR
INTEGER POINT
C
o
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DO 5
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DO I

STAR
NUMP

FA (ARC)=0.0
CONTINUE

ENDDO

ARC=1,NA

=1, NUMODPAIR
EP (1) =INPUT_FLOW (1)

TOD (NUMCOMMOD+1) =NUMODPAIR+1
ATH=0
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INDEX=0

NUMI TER=1

DO 100 COMMODITY=1, NUMCOMMOD
ORIGIN=ORGID (COMMODITY)
CALL SP (ORIGIN, COMMODITY)

LOOP OVER OD PAIRS OF COMMODITY

N1=STARTOD (COMMODI TY)
N2=STARTOD (COMMODITY+1) -1
DO 50 OD=N1,N2

NUMPATH=NUMPATH+1

NEXTPATH (NUMPATH) =0

FLOW=FP (NUMPATH)

INDEX=INDEX+1

NUMARC=0

NODE=DE5T (OD)

DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
FA (ARC) =FA (ARC) +FLOW
PDESCR (INDEX) =ARC
NUMARC=NUMARC+1
INDEX=INDEX+1
NODE=STARTNODE (ARC)

END DO

PATHID (NUMPATH) =INDEX

PDESCR ( INDEX) =NUMARC

CONTINUE
CONTINUE

INITIALIZE MEMBER ARRAY
DO 70 ARC=1,NA
MEMBER (ARC) =.FALSE.
CONTINUE
INITIALIZE THE TOTAL DELAY
CALL DELAY (DTOT (NUMITER))
OUTPUT THE CURRENT INFORMATION TO DISK

CALL PRELOW
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* END OF INITIALIZATION

RRAARARRARRRAA AR AR RARARRARRAARAMARAS AR ANAARRR AR A

axt2t START NEW ITERATION ###xs

NUMITER=NUMITER+1
CURERROR=0

*#2% [OOP OVER ALL COMMODITIES *##+
DO 1000 COMMODITY=1,NUMCOMMOD
ORIGIN=ORGID (COMMODITY)
CALL SP (ORIGIN,COMMODITY)

22+ J,OOP OVER OD PAIRS OF COMMODITY




N1=STARTOD (COMMODITY)
N2=STARTOD (COMMODITY+1) -1
DO 500 OD=N1,N2

CHECK IF THERE IS ONLY ONE ACTIVE PATH AND IF SO SKIP
THE ITERATION

IF (NEXTPATH(OD) .EQ.0) THEN
NODE=DEST (OD)
POINT=PATHID (OD)
NUMARC=PDESCR (POINT)
DO 150 I=POINT-NUMARC,POINT-1
ARC=PDESCR (I)
IF (ARC.NE.PA(NODE)) GO TO 180
NODE=STARTNODE (ARC) -
CONTINUE
GO TO 500
END IF

CONTINUE
MARK THE ARCS OF THE SHORTEST PATH

DESTOD=DEST (OD)

NODE=DESTOD

DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
MEMBER (ARC) =. TRUE.
NODE=STARTNODE (ARC)

END DO

GENERATE LIST OF ACTIVE PATHS FOR OD PAIR

NUMLIST=1

PATHLIST (1) =0D

PATH=NEXTPATH (OD)

DO WHILE (PATH.GT.O)
NUMLIST=NUMLIST+1
PATHLIST (NUMLIST) =PATH
PATH=NEXTPATH (PATH)

END DO

DETERMINE 1ST & 2ND DERIVATIVE LENGTH OF ACTIVE PATHS
ALSO DETERMINE WHETHER THE CALCULATED SHORTEST PATH
IS ALREADY IN THE LIST

SPNEW=.TRUE.
DO 200 K=1,NUMLIST
SAME=.TRUE.
FDER=0
SDER=0
TMINSDER=C
PATH=PATHLIST (K)
POINT=PATHID (PATH)
NUMARC=PDESCR (POINT)
DO 210 I=POINT-NUMARC,POINT-1
ARC=PDESCR (I)
CALL DERIVS (COMMODITY,FA (ARC) , ARC,D1CAL,D2CAL)




FDER=FDER+D1CAL
IF (.NOT.MEMBER (ARC)) THEN
SDER=SDER+D2CAL
SAME=.FALSE.
ELSE
SDER=SDER-D2CAL
TMINSDER=TMINSDER+D2CAL
END IF
210 CONTINUE
IF (SAME) THEN
SPNEW=.FALSE.
| SHORTEST=PATH
- FDLENGTH (K) =FDER
MINFDER=FDER
MINSDER=TMINSDER
ELSE
FDLENGTH (K) =FDER
SDLENGTH (K) =SDER
END IF
' 200 CONTINUE

C t+* TNSERT SHORTEST PATH IN PATH LIST IF IT IS NEW *#** g

IF (SPNEW) THEN

NUMPATH=NUMPATH+1

SHORTEST=NUMPATH

NEXTPATH (PATHLIST (NUMLIST) ) =NUMPATH

NEXTPATH (NUMPATH) =0

MINFDER=0

MINSDER=0

INDEX=INDEX+1

NUMARC=0

NODE=DESTOD

DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
PDESCR (INDEX) =ARC ‘
NUMARC=NUMARC+1 ,
INDEX=INDEX+1 '
CALL DERIVS (COMMODITY,FA (ARC) ,ARC,D1CAL,D2CAL)
MINFDER=MINFDER+D1CAL
MINSDER=MINSDER+D2CAL
NODE=STARTNODE (ARC)

END DO !

PATHID (NUMPATH) =INDEX :

PDESCR ( INDEX) =NUMARC

END IF

*txt+ UPDATE PATH & LINK FLOWS #®x¢

anan

INCR=0
TEMPERROR=0
DO 250 K=1,NUMLIST
DLENGTH=FDLENGTH (K) ~-MINFDER
IF (DLENGTH.GT.0) THEN
PATH=PATHLIST (K)
FLOW=FP (PATH)

IF ((FLOW.EQ.0.0) .AND. (K.GT.1)) THEN
NEXTPATH (PATHLIST (K~1) ) =NEXTPATH (PATH)
GO TO 250

END IE
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PATHINCR=DLENGTH/ (SDLENGTH (K) +MINSDER)
IF (FLOW.LE.PATHINCR) THEN
FP (PATH) =0.0
PATHINCR=FLOW
ELSE
FP (PATH) =FLOW-PATHINCR
END IF
INCR=INCR+PATHINCR
TEMPERROR=TEMPERROR +FLOW*DLENGTH/EDLENGTH (K)
POINT=PATHID (PATH)
NUMARC=PDESCR (POINT)
DO 220 I=POINT-NUMARC,POINT-1
ARC=PDESCR (I)
FA (ARC) =FA (ARC) ~PATHINCR
CONTINUE
END IF
CONTINUE

**+ UPDATE THE ERROR CRITERION *#*
CURERROR=AMAX1 (CURERROR , TEMPERROR/INPUT_EFLOW (OD) )
xa#+ UPDATE FLOWS FOR SHORTEST PATH ****

FP (SHORTEST) =FP (SHORTEST) + INCR
POINT=PATHID (SHORTEST)
NUMARC=PDESCR (POINT)
DO 300 I=POINT-NUMARC,POINT-1
ARC=PDESCR (1)
FA (ARC) =FA (ARC) + INCR
MEMBER (ARC) =.FALSE.
CONTINUE

CONTINUE

#++4+ FND OF LOOP FOR OD PAIRS CORRESPONDING TO COMMODITY
x2a 2+ UPDATE TOTAL DELAY

CALL DELAY (DTOT (NUMITER))
CONTINUE

CHECK IF THE # OF ACTIVE PATHS EXCEED THE ALLOCATED NUMBER

IF (NUMPATH.GT.NNUMPATH) THEN
WRITE (6.*) '"MAX # OF ALLOCATED PATHS EXCEEDED'
STOP

END IF

IF (INDEX.GT.NINDEX) THEN
WRITE (6, *) 'DIMENSION OF PDESCR ARRAY EXCEEDED'

STOP
END IF
OUTPUT THE CURRENT SOLUTION TO DISK
CALL PRFLOW

#ets2 END OF ITERATION *%n2#




*+* IF THE ERROR 1S SMALLER THAN TOL, OR THE LIMIT ON
THE NUMBER OF ITERATIONS IS REACHED RETURN
ELSE GO FOR ANOTHER ITERATION

(oNeNeNe]

| IF ((CURERROR.LT.TOL) .OR. (NUMITER.EQ.MAXITER)) THEN
| WRITE (6,*) 'FINAL STORAGE OF PATH DESCRIPTION LIST'
WRITE (6, *) INDEX
| RETURN
ELSE
GO TO 110
END IF

END
I E AR REEERERERE] END OE‘ M'LILTIFLOI ARRRAEAARAARA A A&




